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Abstract

Refined estimates for the errors in eigenvalue and elgenvec-

tor approximation by finite element, or, more generally, Galerkin

methods, as they apply to self-adjoint problems, are presented.

Particular attention is given to the case of multiple eigenvalues.

The results are new in this case. The proof is based on a novel

approach which yields the known results for simple eigenvalues in

a simple way. Numerical computations are presented and analyzed

in light of the theoretical results.
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1. Introduction.

It is the purpose of this paper to derive some refined esti-

mates for the errors in eigenvalue and eigenvector approximation

by finite element, or, more generally, Galerkin methods, as they

apply to self-adjoint problems. The results are new in the case

of multiple eigenvalues. The proof is based on a novel approach

which yields the known results for simple eigenvalues in a simple

way.

Suppose k is an eigenvalue of multiplicity q of a self-

adjoint problem and let M(\k) denote the space of eigenvectors

corresponding to kk' where '11l! denotes the energy norm for our

problem. Let S be the finite dimensional approximation space

employed in the Galerkin method. k will be approximated from

above by q of the Galerkin approximate eigenvalue:

k k S,k' kS,k+l' . ' kS,k+q-1"

If we choose the kS,i in increasing order then we have

k 'S,k . S,k+q-l"

Our main estimate for the error in eigenvalue approximation is

r .122M(= C" S)
'1.1) S k " C inf inf llu- Ih = C 'S)s' U M u ' .) k '

thus showing that the error between h and k 'the appro:: -

imate eigenvalue closest to k., is, to within a m'utiplicative

constant, the square of the minimal energy norm distance between.

exact eigenvectors u - M(,k) with Nu!! = I and S, i.e., the

square of the energy norm distance between S and the eigenvector

-3-



u -- M( k) with !!u!! = I that can be best approximated by S.

For kS,k+q-1 - Ak' the error between k and kS,k+q-l' the

approximate eigenvalue farthest from we prove

(1.2) q - sup inf fu-0ll 2 = Cr (S)2
Sk+q-1 k uM(k )

llul=l 

and for the errors S,k+i - kk ' = 1,...,q-2, we obtain bounds

in terms of quantities intermediate in size between C;-A (S)2 and
k

C- (S)2 .k

These results should be contrasted with those in the litera-

ture. In Babuska and Aziz [1], Fix [4], and Kolata [6], the

estimates

(1.3 ) k+ - C (S), i = 0,....q-l,

are proved. For i = 0,...,q-2, (1.3) is weaker than the esti-

mates stated above ((1.1) for i = 0 and those mentioned after

(1.2) for i = i,...,q-2); for i = q-1, (1.3) is the same as

(1.2) In Birkhoff, de Boor, Swartz, and Wendroff [2], which pre-

sents the earliest results of the general type we are discussing,

the eigenvalue estimates depend on the sum of the squares of the

energy norm distances between S and the unit eigenvectors asso-

ciated with all the eigenvalues k j not exceeding k" The

feature of (1.I) that is new is the dependence of , (S) on only
k

one eigenvector u- M(kk), namely the one best approximated by S.

Regarding the errors in the approximate eigenvectors, we show

that if uSlk is the Galerkin approximate eigenvector correspond-

ing to S,k' then there is a uk = Uk(S) - M('k ) with Ilukl = "

-4-



such that

(1.3) lus,k U,11 C (S).

The error IlUSk+q-i - Uk+q1 is bounded by Ck (S) and the

errors 1lUS k+i - U 1+i1, i = 1,...,q-2, are bounded by quantities

intermediate in size between (S) and ( CS). The best pre-k k

viously known result is

(1.4) lu s,k+ i  - u k+il 1 C k (S), i = 0,...,q-1.

In Section 2 we introduce the class of variationally formu-

lated, self-adjoint eigenvalue problems considered in the paper,

define the Galerkin approximations to these problems, and in Lem-

mas 2.1 - 2.3 give the preliminary results which are used in the

sequel. The main theoretical result of the paper is presented and

proved in Section 3. The treatment is direct and self-contained

relying on a minimal amount of functional analysis background. In

Section 4 we present numerical computations for a finite element

approximation of a problem with double eigenvalues for which each

double eigenvalue has associated eigenvectors of strikingly

different approximation properties. The quantities

sup inf lu-ill2

u-EM (A k )  I--S

il u11 =1
and

2
inf sup llu-1z I

uEM( k) k S

II ull =1

are thus of different sizes and we would therefore expect S -k

and kSk+ -% to be of different sizes. This is clearly shown by

-5.



the computations. The computations also show that us,k (the

approximate eigenvector belonging to the approximate eigenvalue

closest to k ) converges to an exact eigenvector with good

approximation properties, while Usk+1' the approximate eigen-

vector belonging to the approximate eigenvalue farthest from k

converges to an exact eigenvector with poor approximation

properties.

The literature on eigenvalue problems is extensive, with many

papers bearing, at least tangentially, on the problem addressed in

this paper. We have, however, mentioned only those papers that

bear directly on the central theme of our results; namely, the

Galerkin approximation of eigenpairs corresponding to multiple

eigenvalues. For a general treatment of eigenvalue problems and

their literature, we refer to the excellent and comprehensive

monograph of Chatelin [3].

* 4



2. Preliminaries.

Suppose H is a real Hilbert space with inner product

and norm IJj, respectively, and suppose we are given two symmet-

ric bilinear forms B0 (u,v) and D(u,v) on HxH. B0 (u,v) is

assumed to satisfy

(2.1) IB0 (uv) - C1 IuiI(IvlI, V u,v H

and
2

(2.2) C2  Hullh B0 (u,u), V u H, with C2  > 0.

It follows from (2.1) and (2.2) that (uv)B B(uv) and
B0 0

1/2

lUlBo (Bo(uu)) are equivalent to (u,v) and huhj, respec-
B0 0

tively. Regarding D, we suppose

(2.3) 0 < D(u,u), V 0 * u -- H,

and that
1 ,'2

(2.4) Hull D = (D(u,u))

is compact with respect to !!-!I, i.e., it has the property that

from any subsequence which is bounded in !1li, one can extract a

subsequence which is Cauchy in 11Hi D '

We then consider the variationally formulated, self-adjoint

eigenvalue problem

(2.5) Seek k(real) and 0 - u H such that

{B0 (uv) = kD(u,v), V v H.

Under the assumptions we have made, there is a sequence of eizen-

values

0 < k1 2+

7-
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and corresponding eigenvectors

U 2 '...

which can be chosen to satisfy

(2.6) Bo(UiU.) = iD(ui,u.) = '.

where ;I. = 1 for i = j and 6.. = 0 for i , j. Further-

more, any u S can be written as

(2.7) U j, with aj = B o(u,u),

j=1

where (2.7) converges in 11ijB The eigenvalues \ satisfy the
0

following well-known variational principles:

Bo(uu) B(ul,U

= uH D(uu) D(u1 ,u )

(2.8)
Bo(U,U) B(uk~uk)

in= mB 0 _____ k = 2,3 ....
k u H D(uu) D(ukuk)

-'B 0 (uUi)=0,

i=1,2 .... k-1

(the minimum principle)

and

B0 (Uu) Bo(U,U)

= min max - max , k = .2...
k V uV D(u,u) UDt~=p(l....k

dim Vk=k

(2.9) (the minimum-maximum principle).

For any k we letk

(2.10) M(Ik)=(u:u is an eigenvector of (2.5) corresponding to

We shall be interested in approximating the eigenpairs of

(2.5) by finite element, or, more generally, Galerkin methods.

-8-



Toward this end we suppose we are given a (one parametric) family

'S 0 <h of subspaces , H and we consider the eigenvalue

problem

Seek ( (real', 0 x u - S such tha
(2.1h 

s

B (u,,v) = D j) V v Sb.

The eigenpairs .h,, of f2.11) are then viewed as approximna-

tion so the eigenpairs ,u) of (2.5). (2.11) is called the

Galerkin method determined by the subspace Sh for the approxima-

*. tion of the eigenvalues and eigenvectors of (2.5). We will alsc

sometimes refer to problem (2.11) as the Galerkin approximation :f

the problem (2.5). (2.11) has a sequence of eigenvalues

0 < . .N = dim S

hl h,2 h,N' h'

and corresponding eigenvectors

Uh, '  uh,2 ' uh, N

which can be chosen to satisfy

(2.12) B0(uh,i'UhJ) = h,iD(Uh,i'Uh,j) i,j i,j= ..... N.

Minimum and minimum-maximum principles analogous to (2.8) and

(2.9) hold fcr the problem (2.11); they are obtained by replacing

H by Sh and letting k = 1,.....N. We will refer to them hy

(2.87") and (2.9*), respectively. Using (2.8) and (2.9) tc -ethear

with (2.8: ) and (2.91) we see immediately that

(2.l3( k h,k' k = 1,2......N = dim Sh"

For every kh,k we let

- L
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M(A ) = {u:u is an eigenvector of (2.11) corresponding
(2.10*)

to kh,k).

Because of (2.1)-(2.4), 0 is an eigenvalue of neither (2.5)

nor (2.11). It will be convenient, however, to introduce the

notation 0 = A = 0.0 h,0

In what will follow we shall assume that the family (Sh

satisfies the approximability assumption

(2.14) inf llu- ll B0----O as h- O, for each u-_ H.
4_Sh 0

It follows from the variational principles (2.8), (2.9), (2.82 ,

and (2.9*), and assumption (2.14) that A h,k- k as h----40 for

each k.

Our analysis employs two functions 4(\) and Ph k) of the

non-negative real variable A which are associated with the

eigenvalue of (2.5) and (2.11), respectively. We define

(2.15) (A) = inf I1 - k-

j=1,2,....

and

(2.16) h( 1\) = min 1j=1, ....N h,j

It is immediate that the functions are non-negative and cont~il:cus

in and that

S(k) = 0 if and only if k =k for some -

and

h 0 if and only if = h for some j.

In the following lemmas we give characterization of and

- 10 -
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h which do not involve the eigenvalues kj and A h,j' respec-

tively. For 0 - A < x and u,v - H define

(2.17) B(k,u,v) = B0 (u,v) - kD(u,v).

We now have

Lemma 2.1. For all 0 k < .,

*(2.18) +(k) = inf sup iB(A ,u,v) j.
u -- H v e-H

l1U11 =1 llull =1
B0 B0

Suppose k has multiplicity q, i.e., suppose

k-i k k+1 k+(q-1) k+q"

Then, for

1 -1 -
( 2 . 1 9 )~ ~ A+ Aj_ _ _ _ ~Ak -

21) k2k+q 2

we have

(2.20) = - A--
k

and

+M( = sup IB(k,u,v)
v-i H

II VIIB =

(2.21) 0

= IB(k,u,u)l, V u M(k) with , =

Proof. For u,v H write

1. a Ua., V = b.v..

j=i j=1

Then

(2.22) B(k,u,v) = a jb;(l -

- i

- --- - - - - - - . - . -- "-- - -



Thus

( 2.23) sup iB(k,u,v)I [ai -( 2]11/2,
v- H 2: 1

I1IV11 =11
B0

from which we get

inf sup IB(k,u,v)I inf 11 -1 = k)

11IU11 =1. IIVIIB =1

0 0

This is (2.18). (2.20) follows from the definition of C) and

k.

(2.21) follows from (2.20), (2.22), and (2.23).

In a similar way we have

Lemma 2.2. With H replaced by S h' Ik by k hk' and u h by

u hk Lemma 2.1 holds for + () (Relationships analogous to

those of Lemma 1 will be indicated by an asterisk.)

if k is an eigenvalue of multiplicity g, then k h~k''

k hk~-1could be multiple or simple. The graphs of t'ik) and

h()is given in Figure 2.1

-I ), ) ki 
-. ,

'.~~~X Xh% - ,, a

A h, h, 2 Xh,ki- hk hk X h.ki.

Figure 2.1. The graphs of +(I) and h(').

* - 12 -



We end the section with a lemma that expresses a fundamental

property of eigenvalue and eigenvector approximation.

Lemma 2.3. Suppose (k,u) is an eigenpair of (2.5) with IUll D

1, suppose w is any vector in H with liwlID = 1, and let ki

B 0 (w,w). Then

( 2 .2 4 ) -l - l B 2 2 l w - l D

(Note that we have assumed u and w are normalized with respect

to 11ID here, whereas in (2.6) and (2.12) we assumed u. and

U hi are normalized with respect to 11-11B 0*

Proof. By an easy calculation,

Ilw-uliB 1 wlwu llD 2 lI 2 B 2B (w,u) + li 2
B0 DB0 0B0

- \lwiI + 2kD(w,u) -klullI

D D*

Then, since

!IW[ID = OIURID 1

lw 2 =~

B 0

lull 2 = kB0

and

B 0 (w,u) = kD(w,u),

we get the desired result.

- 13 -



3. The main result.

For i = 1,2,... suppose Ik. is an eigenvalue of (2.5) of
i

multiplicity qi, i.e., suppose

< == " k
k1-1 k k+1 +q-1 q k.2+'

Here k i = 1, k 2  is the lowest index of the 2nd distinct eigen-

value, k 3  is the lowest index of the 3rd distinct eigenvalue,

etc. Let

(3.1) C, .(h) = inf inf Ilu-rUB01 j 1 ,q..
u.M(k ) t-Sh Bo

i

l1ull =1
B
0

B0(Uuh,k.).= = B0(uh,ki+J 2  = 0

The restrictions B (U,U h,k) = ... = B0(Uuh,k i+j2) = 0 is con-

sidered vacuous if q; = 1. Note that = and .

where r and E are the quantities introduced in Sec-

tion 1. It is the purpose of this section to estimate the eigen-

value and eigenvector errors for the Galerkin method (2.1:) in

terms of the approximability quantities . .(h).

Theorem 3.1. There are constants C and h0  such that

(3.2) k +j-1 2 h,ki+j-1 i, (h), V 0 < h h0 , j =

and

U I C: . (h), V 0 < h h . .....
u+j-U1 h,k +j-l" B 0

i = 1,2..... To be slightly more precise, the eigenvectors

U',U 2 ... of (2.5) can be chosen so that (3.3) holds (as well as

(2.6)).

- 14 -



Proof. Overview of the Proof. The complete details of the proof,

which proceeds by induction, are given below. Here we provide an

overview. In Step A we give the proof for i = 1. The proof is

very simple in this case and rests entirely on the minimum prin-

ciple (2.8*) and Lemma 2.3.

The central part of the proof is given in Step B. There we

prove the theorem for i = 2, proving first the eigenvalue esti-

mate (3.2) and then the eigenvector estimate (3.3). In particular,

in Steps B.1 and B.2, estimates (3.2) and (3.3), respectively, are

proved for j = 1. We further note that the argument used in Step

B proves the main inductive step in our proof, yielding the result

for i = i + 1 on the assumption that it is true for i i. Tc

be somewhat more specific, in Step B.1 we prove (3.2) directly for

any i 2 and in B.2 we prove (3.3) for i = i + 1 under the

assumption that h1Uh, j - uj!!B- -O as h-O for i (cf.

3.36).

Details of the Proof. Throughout the proof we use the fact that

(h) can also be expressed as

i (h) = inf inf lu-i B, u,:-M('tk. I-S hO

( 3 .i ' ) ll u ll = 1 I ' U Bk 1-

.B (u0 ~ku
Bo(uuh,k)= =Bo0(UU h,k4+j-2 )= 0

Step A. Here we prove the theorem for i = 1.

Step A.1. Suppose kk (k, = 1) is an eigenvalue of (2.5 with

multiplicity q 1, i.e., suppose = k = ='1 2 q 1 qlK

- 15 -

-o



In this step we estimate - the error between anh,l 1'
the approximate eigenvalue among h.'khq that is closest

to k1' i.e., we prove (3.2) for i = j = 1. Note that

(h= inf inf !!u-,1BS'u-M(\ 1 t-S h B0

HIulliB =1 S

is the error in the approximation by elements of S, cf the most

easily approximated eigenvector associated with

From the definitions of E (h) we see that there is a

- M(k ) with luli 1 1 and an s - S such that1 hB 0  h h

(3.4) luh - ShB = (h).

Let

u h s h

h h
D(uhUh) h /D ShSh

By the minimum principle (2.8*) we have

(3.5) h,l - 1- Bo(Sh Sh) -

Now apply Lemma 2.3 with (klu) = (' uQ, w = s., and =

BoSh(s h) This yields

36 0(h'Sh - I 'sh h' 0  - %llSh'u •(3.6)s 2~ CI3 -h , B
-2h' h B0 h hB

(3.4) - (3.6) yield the desired result.

Step A.2. In this step we prove (3.3) for i = j . Let

U ,U 2  .... be eigenvectors of (2.5) satisfying (2.6). Write

- 16 -61
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(3.7) u a(l)u..
h,1 = a j 3

j=1

From (3.6) and (3.7) we have

- x
Ia I) I Ia( )] 1 k /k )

q I11j=q +1 j=q 1 +1

1 1

= a (~hluI) \I~j=1-

= B(% ,U h,l, Uh, I )!

= B(kh,1' Uh,1'U h,l)+( 1- kh,l )D(U h,,-'" h,-'i

SCc 2 (h).

Hence

du a~) a 1212

ilUhI -j=a -B 0 .j

(3 .9 ) 
=q 1+1

C(l - k ,'q k-1 2
q+1'

q,

Redefining u I to be q1 we easily see that

II a u 11
3=1 B 0

IIu II 1, so that (2.6) still holds, and
I B 0

(3.10) !Iu - u C (h),
h,1 lB 0  1,1

as desired. Note that u1  may depend on h.

Step A.3. Suppose q 1 2. From (3. 1') we see that

- 17 -
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(3.11) , (h) = inf inf !!u- 4l
1,2 B.

u E M ( ) aS h
1 h

HUIll =1 B0(huhl)=O

B0 (U, Uh, 1
)=

Choose uh M(k1 ) with uII B0 1, BO(uhuhl) 0 and s

Sh with B (s hU ) = 0 so that

(3.12) !uh-ShB = ,(h),

h hB 0  1,2

and let

U h  h
U = Sh =

VD( uh uh) h  h

Since B0(shUh ) = 0, from the minimum principle (2.8"), Lemma

2.3, and (3.12), we have

-- 2 C~2(3.13) - 1s u 1 hI , (h).
h,2 2 h h B 0  1 ,2

This is (3.2) for i = 1 and j = 2.

Step A.4. In Step A.2 we redefined u1 . Now redefine u2 ..... q,

sc that u I, ..... u are B -orthogonal. Write

0

Uh Za (2) U..• h, 2 I '

j=1

Now, proceeding as in Step A.2 and using (3.13), we have

2 ) ] 2  ( 2 (

( 2..) 1a2)J Z a2j ( -I2' a 2/
J=q 1 +1 j=1

= B(' 2, uh,2,uh,2)

-1
= -h,2 2 h,2

C'. 2 (h).
1,,

- 18 -
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Thus
ql

(3.14) Uh, - B0  C, 1,2 (h)
J~l

But by (3.10),

a = Bo(uh 2 ,ul)

B 0o(U h,2' U -Uh,l)

(3.15) s U h,211B 0 IUl-UhIiB0

r- III ~(h)

: C 1,2(h).

Combining (3.14) and (3.15) we get

U Za(2)uIIB IIU 2 - Za(2)u H, + Ila 2ju 11
Ih, 2 2 B 0  Uh, 2 2: B 0  1 80

j=2 j=1

C -1,2 (h).•

q a(2)
2a. U.'j = 2 3 3

Redefining u 2  to be ql , we see that lu2ilB =

Z a. U3IIB
j=2 0

and B0 (u l,u 2 ) = 0, so that (2.6) holds and

. /3.16)- U2IB Cc (h), ::(3. 6) lu h  2 1 0h ,2 2, 1 ,2'
0

which is (3.3) for i = 1, j = 2.

Step A.5. Continuing in the above manner we obtain the proof of

(3.2) and (3.3) for i = 1 and j = 1 ... ,q I'

Step B. Here we prove Theorem 3.1. for i = 2.

- 19 -



Step B.I. Suppose k' k 2 = q1 +1) is an eigenvalue of (2.5) of

multiplicity q2 " In this step we estimate -h,k2 k2 the

error between k and the approximate eigenvalue among

S 2 kthat is closest to k Note thath~k 2  h,k2+q 2-1 k

(3.17) 2 1 (h) inf inf !u-111'B0
u-M( . I -Sh

B 
02

Write k- _l == r k Ah _l r~,2 and ~ 2 h k
2 ht 2 1 h ~

Then 0 < < 1 and 1h 1. Let L' h.I From (2.13) and

the definitions of k and A in Lemmas 2.1 and 2.2, respec-

tively, we see that

(3.18 2  h,k 2

A simple calculation shows that

k -1 k
2 1+ - 2

and
=

2 oh
2 0 h

'~ 2 J ~ -I h 2 'h

Hence (3.18) shows that

2
1+'

Since h -A as h-0 (see Section 2), we see that

2
h'r h-1 ,  and r h as h--0. Thus, noting that

2
-< 1, we see that we can choose such that 0 < h < hl+r0

implies that

- 20 -
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2

l~+1
(3.19) - 2 h 1 +3'1.

1+t -1 h 2 -2+2t

From (2.19), (2.20), (2.19*), and (2.20*) (see also Figure

2.1) we get

0 -) - )= F 'h 2  r-h' 221 1k2

h h,k 2  h,k 2  ph k 2

-1

and hence, using (3.19), we get

k h,k 2  k k2  k2 ( Oh- 1)

k hk =h~ hk(J
2 2 2

1 -- h h k - h "2 1'

(3.20) L''h('hk 2  ' , "

K -- , -

k2 1h('h,k2 -

,h('h,k2  - h, -

2 k[ h( h,k -

2

provided that

,3.2 ) h( h k - ('h,k2) ' 1 2.

We will now show that

2

3.22) h(h 2k - ( 2 C 2 (h , for h h ,
' ~ 2k2 2 1

where C depends only on 1k - and k and, in particular.
1' 2- 2
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is independent of h, and h0  depends only on k , k. 2,' 1' 2 - <2

and the approximability of the eigenvectors in M( k2) by Sh'

As in Step A.1, choose uh M(Kk2) with IIu 1 1 and s
h .2 hB 0

Sh  such that

I3.23) *Iuh - Sh IB 0  2 1

V. We see that sh  is the B -orthogonal projection of uh  ...c

Sh ' i. e., that

(3.24) Bo(Uh - ShV) = 0, V v --

Let wh U h - sh' Then

(3.25; lWh! t  =i 2 1 (h)
h B B0  2, 1

pand

(3.26) 2 2 2 2Uhl2 1,'3.26) Il S !IB I Shl! 4- BO WBOu ! = 1

hB0 hB0 hB0 hB0

Next we write

sh =c hUh + eh,

where

Bo(uh'eh) = 0,

4.e., we let ChU be the B -orthogonal projection of s, onto.ew ltch uh beth C

span (uh ). Let rh = (I-ch)uh. Then

wh = rh - eh' B(eh'rh) = 0,

5-' ,which implies

(3.27( e h i lwh I
-hB0 hB0

Furthermore, using (3.24), (3.25;, and (3.26) we have

- 22 -



ch = (ShUh) B (s s0 h h B0 hB0
and
and. c h = Bo(Sh~uh) = Bo(Uh - wh~uh)

N LhJI o - Bo(whuh)

1- 'Iwh
h

2,1 (h)

> 0, for h < h0'

with h0 sufficiently small. Thus we can assume

0 < C h

Also,

( 3 . 2 8 , li r h FI B ,, w B o

h B 0 hB0

'o see this we refer to Figure 3.1 and note that

_!rhl B0 h BO0!IhIB = lWh!lB cos ,.

and

1 IWhIIBo 1 h1o1 sin = cos ,*

From (3.28) an the definition of rh we have

(3.29) c = 1 -2tWhtB

h hB0'

- 23 -



~Sh

Figure 3.1. Configuration of rh, Wh , Uh, 0, and s.

Assume now that uk = uh (redefining uk' if necessary).

Write
X,,

e h I q v b bj u.

j=1 j=1

Then

B(h,k2,Sh,V) c hB0(uhv) + B0(eh,v)

hk '5h = h Dh' +) Ohk2 eh'k2AChDu Uh) - A D(eh'v)

[h,k h v) 'h2

C hbk + qjbj - kh,k 2kCh bk
2 '=12 2 2

i j=1

*k 
2

k h k2 a.qjb i iR =j
-k

2

- -1 - -I

chb k(1- -h,k2k + 2 qjbj(1-h, ),
2 2 j=1

k 2

24
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and hence

sup FB( h,k2ShV) sup IB( h,kshV)

vS h h SsH

IVIIBO=1 BO=1

(3.30) = [ch i - h k 2 Ak 2

, k 2 '

1.

2 
1 ,

22

Combining (3.27), (3.29), and (3.30), we get

2h- I 2 2--sup IB(kh,k2,ShV)l 'h(I - H ., B i h,k k2
vESh 

' 2

ilVll Bo= 1

+ sup - Ih, k 2 qel
j=1,2 . . 2hk2 2 k

2 2 -
(L 1 - ?tWhdiB 1 h,k 2  2

L ~ 02

+ sup (I - h 2 Khi 2 7:2
j=1,2 ... . 2 2  B-

2

r2 2,1 2

- liW )2 - h,2 2

+- - 2 2

j=1 ,2 .....
" 2

= Q.

Thus, using (3.25) and (3.26), we have

- 25 -



+Q'h( h, k2 )  IISh 1B

F '- 11 12 2-T
L !IhIB ' ,k2

+ su p (1 - 2h k w)2 11h B ( 1 1 2

j=1,2 ... .'k2 0 0

+2 2 1,'2
L 2 h,k2 + 2,1(h)]

and hence

Rr 2
(3 .31 hR 2 , 1(h)
(3.31) h(k h,k - h,k )' #2 2 2, (k[

,,2

where

- -1 2 -1 2 -R = sup (I - h k Ik - 2 1 (h)) - ' ( k 2
j=1,2 .... 2 2. 2

dk
2

One can easily show that is bounded independent of h;
2,I(l h, k 2

in fact, using (2.20) and (3.19), one can show that

2 k

IJ R 2k k22w, 3.32) 
2 -:,, 21(k h,k 2 21 1(1-t-) [1"' 2, (h ] k1 -r

provided 2 1 (h) < 1/2, i.e., provided h < h0  for hsuffi-

ciently small. Hence, combining (3.31) and (3.32) we get

k_ 
,k2 

2

(3.33) h(h 2 (h) '' 2 (-r) '1

which is (3.22). Combining (3.20), (3.21), and (3.33) we have
2

)3.34) h-k- C2 (h), for h ,h-
" 'zhk 2  22,1 h)

where

- 26-



222k 2

(3.35) C= 2

This is (3.2) for i = 2, j = 1.

Comment on Inequality (3.34). C in (3.34) clearly depends on

k1' kk2-1' and ,k2 but is independent of h. Note that if we

were considering a family of problems depending on a parameter

we could bound C = C(r) above, independent of r, provided ',.

= k(r) was bounded above, 1 = was bounded away from Q

and r = r( ) was bounded away from 0 and 1. It follows from

(3.31) and (3.33), that (3.34) is valid for h h0  where -
"0V dpeds nl o

depends only on k 1' -1' k k 2  and the approximability of the2

eigenvectors u., j k .. k2+q2-1 by Sh' For a family of

problems, ho(c) could be bounded away from 0 if kl(r) was

bounded away from 0, ( ) was bounded above, (r) was bouid-

ed away from 0 and 1, and the eigenvectors u u= u(r), j =

k k2 +q2 -1, could be approximated by S uniformly in

Step B.2. Suppose, as in Step B.1, that k has multiplicity

q2 " We have shown in Step A.5 that we can choose the eigenvectors

u1 u,,... of (2.5) so that (2.6) holds and so that

(3.36) lUh, j - ujHiB C 1 .(h), j = 1,... ,q l  2-

Write : (k2

(3.37) Uh 2 a 2 u.
h, k 2 .1 . j

j=1

4 From (3.37) we have

- 27 -



5 [a 2 ( - k 2 ) 1 JB(k 2 Uh,k2,Uh,k2

I B(A

,h, k I Uh, 2 'Uh, k,j2 2 k Uh )

+ _ ~ )D(U h,, U h,12+ k2 h22 '2

h,k k h,kh2 2 2

which, together with (3.34), yields

k2-

(3.38) ! a ](i - k )I + a ! () 2

jk 2+q 2
=- 2 "S C " (h ) .

Note that the first term inside the absolute value is negative and

the second is positive. In addition

C 1  S {1 - kk .2/ I < C2 ,  Vj = k2 f k2+1 ... , k2+q2-

with CI ,C2 positive numbers. Hence from (3.38) we obtain

k 2-1

L k 2 F(33) Z La  -] D1L 2,1 (h) + D2 a
j=1 J=k2+q2

and
(k2] 2  k 2- F (k,)12

(3.40) a D3 2'(h) + D 3  a )

j=k 2 +q 2  
j=1

Write

(3.41) uh. - u. = b u i = 1,...k 2-! =

h,i : i,j ji 2....,
1=1

Then, by (3.36),

- 28 -



x

(3.42) 2b = - 2
(3.b j Uh,i i IB0  2,i(h), i = 1....k2- .

j=l

Next we wish to find constants ,i I ... ,k_ so that
k22

2(k 2 )

(3.43) B0 (ui, I U h, j ) = a. i =2-

j=l

Using (3.41), these equations can be written as

2- k2

BOY u + 0 j Y 'b =U C + b c,
01 iZ I. j z jt J ? ?- I

j=1 =j j=

(3.44) (k2 )
= a. , = .... z, .

Since (2.14) implies E2, (h)----*O as h----4O, from (3.42) we see

that the bj i are small for h - h with h 0  sufficienItly

*small, and hence the system (3.44) is uniquely solvable, and,

moreover, there is a constant L, depending only on k2 , such

that
k2- 1 1/2 k2- 1 - 2
k-I1i k- -12

(3.45) K 2 LZ2 (a( k2 )]2 1

=j .

Now, from (3.36) we obtain

, (k2 )

la . = IB (uh uS0 k 2 '

= 0B(uh,k 2Uj - Uh,.

1 1Uh,k 211 Bo0 llU - U h,ji IBo0

I ku - IIu -1
0 hj Bo0

I cI ,j (h), j = ...... -1

- 29 -
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Letting
k 2-1

(3.46) 2 (h) = e 2L1 (h)k 2 j=1

we see that

k2 -1

and thus, from (3.45)
k2-1 1/2

(3.48) J= 0 u 2J LC k (h)

- k (h).

Now let
k2- 1

(3.49) "= Uh'k2 1 1l

Then S h * Furtherrr.Dre, from (3.43) and (3.44, we get

0, i k - 1

,B 0 ui (k2 2

a . - i l b 3 i 1 2
j=1

From B3.48) and ( 3.49)2

0 1il 11 ) ll U

a I. - , I

h2 2 1B

(3 5 1 - k2-1 -I 2

Co (h).

- 30 -
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Using (3.34), (2.21*), (3.50), and (3.51), and the fact that

,,. (h)----0 as h-0, we get
I2

h'k 2 k 2
C 2, (h)

h,k
2

(3.52)
- B( 2 ,Uh, 2k2  B

(k k -

22
C ' a i a , l b ,

=k +q2)!=I

where C' > 0 and is independent of h. Combining 2.42, .4

(3.4 , and (3.52) we obtain

4 - aJ 2,

=k 2 +q 2

( k 2-1

=k 2+q 2 =

2-

C L 2 1 ( h )  + 2 . a

-k' 2 =k +q 2
k 2-1F2  2 x

2h + k)~

=k, 2 +q2 h)+1 i=1 [- k 2 +-q2

(3.53)

.t=k 2 +q,

- 31 -
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k 2-11 
22 1. c + 2

C 2  I(hI i a
Li=1 Lf =k2 2

max i
i-1 . .k 2-1

2~2
i-"r 2-1 -,1 2

2 'h) 1 I I2C' .' 2, " kl )-I 1

1 ! '2

a 2 2
S=k2+2-

2 +q 2

2 , 2 - 2

2,1 (h +

2, 1, i

S~~~ 2 Lk i(~~1'
=k,2+q2-

2 2.

: a~~' ,

,,.3 a quadratic inequality in a ra "2,i 1
b =k 2+q 2-- L  ! i ,e.

solution yields
kk 2-1
2(k2) 2  2 - (k2)'2 2 ,(3.54) !a 1 (h )  a + C 2,:

~3 5 ) , ia - ' L ~ Li 2,1'
=k2+q 2  2

- 32 -
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Combining (3.39) and (3.54) we get

2 a r -kD22
2  2 2 (k a12 2a Da ( 2 ) + D C 2  (h) a, + D Cc (h,

2

and thus, since ilrk2-1(h) is small for h small,

,k -1I

(3.55', ai D 5,2. (h2

Next, combining (3.40) and (3.55), we get

(3.56) a a + D6c 2 1 (h).
,tf.=k 2+q 2

'- Finally, from (3.37), (3.55), and (3.56), we have

.k 2+q 2-1 k 2-1

2 Y [ai2 z( 2=-k L j=1 j2
• ., j~ k 2  2

C 2, (h)2

k 2+q 2_1 (k2

a. U.

Redefining u to be 12 we see that :"I-
'/.~ k+q2-1 k

2 2 2  2
S a. B

j=k 2

1, so that (2.6) holds, and

(3.57) Uh,
• h ' 2 :2 B0 2 ,i ''

This is (3.3) for i = 2, j = .

-33-
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Comment on Estimate (3.57). In the proof of (3.57) we used

(3.36), which was proved in Step A. A careful examinations of the

proof of (3.57) show that we that we did not use the full strength

of (3.36), but only the weaker fact that UhJ - -0 as

h----*O for j s k 2-1. (Cf. the Overview of the Proof.)

Step B.3. Suppose q2  2. In Step B.1 we estimated

In this step we estimate kk2 h2 k2+

We proceed by modifying problems (2.5) and (2.11) by res-

tricting them to the space

h,k 2
H {u- H: Bo(U,Uh,k2

and

h,k 2
Sh  = (u h : Bo(U,Uh) =0},

~hk2

respectively, i.e., we consider the problems (2.5 ) and

h,k2  h,k,
(2.11 ) obtained when H and Sh  are replaced by H and

S in (2.5) and (2.11), respectively. (2.11 ) has the

same eigenpairs (kh,j' u h,j) as does (2.11) except that the pair

h,k h,k2
h, k 2 Uh,k 2 )  is eliminated. (2.5 ) has egenpairs

2 22

u h 2)which in general depend on h. Nevertheless,

h,k 2
(3.58) k = k, =k 0,..... 2 2,

. .e. , , the eigenvalue under consideration, is an eigenvalue

h.,h 2

of multiplicity q2 -1 for problem (2.5 ). Its eigenspace :s

-34 -



h~k

M (2 =u - M(k2 B 0 UUh,k2=

We can now apply the argument used in Step B.1 to problemsh,k 2  h~2

(2.5 ) and (2.11 ) and we obtain (cf. (3.34))

223 .59 ) h k2 - k2 l - C , 2 (h ), for h < h O

S22h,k 2

Since u h,k2 depends on h, the problems (2.5 ) and
* h ~k2

h,k
(2.11 ) depend on h. It follows from the Comment on Inequal-

ity (3.34) with r = h that we can apply the argument in Step

B.1 obtaining C and h0  that are independent of h. To see

h,k 2  h, k 2
this, note that k = 4k' by (3.58), 41 by the

22 1 1'
h,k h,k h,k

minimum principle, and t k _ =
k 'k ~ k -lk=/a2 2 2 2

h---, by the minimum-maximum principle and the fact that u,.
:.- ', ~h, k 2  •A,

----U2 (cf. (3.57)), and hence k,2 is bounded from above,

h,k 2  h,k 22 is bounded from below, and , is bounded away from C

h,k,
and 1. Then observe that the eigenvectors in M ( can be

approximated by Sh' uniformly in h. Note that in Step B.1 we

also used the fact that hj - as h---O for = -

and k,. It is easy to see that the corresponding fact is in

-, the present context.

Step B.4. Suppose q2  2 as in Step B.3. Here we show that

Uk+l can be chosen so that 1h1k2 - uk+ O 2,
k2 + k 2 +1 k2 +1P0 22h W

know that

- 35 -
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,c , .(h), j = 1...... q
(3.60) 0!h,j - u'B 03  - = =

C,' (h), =2,1 q + = "2

(cf. (3.16), (3.14), and (3.57). Assume that k +.

have been redefined so that (2.6) holds. Write

,X ( k 2 +J)

(3.6'. U h,k +1 a2 u+:.
j=1

N4
If we apply the argument used in Step B.2 to Uh,+ , ..e.,

we let k2  be replaced by k 2+l and use (3.59) instead of

t3.34), we obtain

S3.62+ u - - , (h'
h, 2 j B 2,2

But, by (3.60),

ak = B(uh ,u k )

2 '2 2
2 2 2h0 

2
"- 

B0 ( Uh, k2 ' U k2  uhk 2

- ' u h'I k2 
2 B0

S- 
C, 2 , (h)

C -2,2 (h)

and hence
k2+q 2 -1- (k2

U k + - U" 2

" ,:J = k 2  l

!u~ a. u-C

@4

***5 U .*J*-



_a.j

2+q 2 + I ( 2

a. u

Redefining uky to be 2 we see that
2 r, wese)ta

Z a. u.1
j=k+l J 0

iu, it = 1 B o(uk2 u ) = 0 = kso t a 2 6
l+1 B (u+l - 'u 0' so that (2.6)k ,+ 1 B + ... . . 2 '"

holds, and
-63 h,k2 -Uk2 llO C h

II.3 : 2 2,2'

2 k +

which is (3.3) for 1 = = 2.

Step B.5. Continuing in this manner we prove '3.2; and 3.3 fcr

i = 2 and q 2"

Step C. Repeating the argument in B we get 3.2 and 3.3

i = 3,4,..... This completes the proof.

Remark 3. 1. It is possible to use an alternate argument 'n Se

B.1 if we introduce the so-called Riesz formulas for the spectral

projections associated with an operator. We suppose the space

and the bilinear forms B0  and D have been complexified in the

' usual manner. Let P, and P h, be the B -crthcgonal proec-
2.- 2 2 0

tions of H onto M(k) and h M(hke+i) the d om

'p.O

the eigenspaces M(hk -e.... .. .. .
h, k-, i' - -. .2' reptPe.

::iu'rd':ce next the operators T, T'_ H H defined by

Tf -: H

iBo(Tf,v) D(f,v), 1 v H

and

p - 37-
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Thf S
h h

BO(Thfv) = D(f v), V v : Sh

It follows from (2.1), (2.2), and (2.3) that T and Th  are

defined and compact on H. Furthermore

(3.64) !!(T-Th)f!!B C inf Tf -
h , 0 ,h

It is immediate that (k ,u) is an eigenpair of (2.5) if and only
-i

if (p = . ,u) is an eigenpair of T. Likewise ( hUh) is an
-1

eigenpair of (2.11) if and only if (p = h 'uh) is an eigenpair

of Th. As a consequence of (2.14), Th---*T in the operator norm

associated with 11.'IB Let F be a circle in the complex plane
0

centered at ik2 k2 - enclosing no other eigenvalues of T

Then for h sufficiently small, F will contain the eigenvalues

phk+i = hk2+i, = 0 .... q2-1, of Th. Also, P and'2 ' 2'2

Ph,k 2' which are referred to as spectral projections associated
'2

with T and 4L.2. and Th and p h,k2 +i i = 0,...,q 2-1, respec-

tively, can be written as

(3.65) P 2 i (z-T) Idz

2 2 F

and

(3.66) h,. 2  = (Z-T dz.

These are the Riesz formulas. With these formulas we can derive

an eigenvector error estimate which will lead to the eigenvalue

estimate (3.34).

- 38 -
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Let u - M( 2 ) with Ijull 0 = 1. Then vh = P u
q2 _! ' 2

M( k2 +) and from the formulas (3.65) and (3.66) we obtain

i=O

IIu - V = !1(? - P )u1l
h B A h,k B

0 02 2  0

1z-T (T-Th)(2-T) u dzi!

1 I -1

(3.67) = II2-( z-u dzjj

1 -2- itT h  ,-1
2T [21 r rad(F)] sup II( ) x tlT-Th . ..z-F h ad '-

-1

-k 2 + rad(F) + p h k2+q2_ ) II T-T h)U'

C (T -Th )u lB 0B0"

13.64) and (3.671 yield

I(u-V h! B C inf IT u-0(
hSS0 h  0O

3.68 = C inf !IIu-1 B1<S h  BO

C inf IHu-01
1 ESh B0

This is an eigenvector estimate; it shows that starting from an:

2 wi th 1,1 1 we can construct a =.2 ' h

> M k that is close to u. We now use 3.' to r-e

i=1

3.34)

By the minimum principle (2.8*) we have

- 39
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(3.69) h'k - k inf B (v,v) - k
h 2  I2  v-S h 2c

11 VII D

BO (VUh, i)=0,

i=i,.... '2-
q 2 -1

Since Vh = h - k 2+i we know that Bo(Vh,Uh ) 0 , 0 =

...... k2 -1. Thus, from (3.69) we find

V hh

H Vh u 2 Vh _ I; D- ________h _ D  II ll. . o
hk2 k2 D 0 k2 HV h'lD -OD D

2
Cllv. - ull.o

-C inf I 2u-i 2

TESh B0

Since this is valid for any u - M(k ) with Hull = 1, we see

that

Ainfin 2
-h,k k 2  u-f ( i 2f h2 2 U -M(Ak 1 - h

2

which is (3.34). We note that the proof given here rests on equa-

tion (2.24) in Lemma 2.3 and employs formulas (3.65) and (3.66)

to construct v h(U) that is B -orthogonal to u , i =

0..... c2 - 1, and satisfies

4/.. - 40 -



IU-vhB Cr 2 1 (h)
h B 0 2,1

We have already seen that the eigenvalue estimates in Steps A.1,

A.3,... can be based on Lemma 2.3. Proceeding as we have here, we

see that all of the eigenvalue estimates (3.2) can be based on

Lemma 2.3.

- 41 -



4. Numerical Computations.

In the previous sections we have analyzed the errors in the

Galerkin approximation of an eigenvalue problem, concentrating

especially on the case of multiple eigenvalues. In this section

we consider a finite element-Galerkin method for the approximation

of a model, one-dimensional problem with multiple eigenvalues,

presenting numerical results and their analysis in terms of the

results of Section 3.

CoRsider the eigenvalue problem

Im'p ---" '(X)U, x) = P , (X) U, X - I = ( ,, ,

(4.1) u(-") UPI),

where

q)(x) =r lxi sgn x, 0 < o < 1.

It is easy to check that the eigenvalues and eigenfunctions =:-,e as

shown in Table 4.1.

Table 4.1

Eigenvalues and Eigenfunctions of the Eigenvalue Problem (4. ;

i . U.

0 0.0 1

1 1.0 cos W(x)

2 1.0 sin O(x)

3 4.0 cos 20W(x)

4 4.0 sin 2q'(x)
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1,2,3,4, for ' = .4. These errors are plotted in Figure 4.1 in

log-log scale. We clearly see the different rates of convergence,
2 1.4

specifically seeing the rates h and h = h for the

errors in h,i' for i = 1,3 and i = 2,4, respectively, as

suggested by (4.2) and (4.3). It should be noted that the esti-

mates presented in Theorem 3.1 are of an asymptotic nature in that

they provide information only for small h (or large n), i.e.,

for h (or n) in the asymptotic range. From Figure 4.1 we see

that for , = .4 we are in the asymptotic range quite quickly,

say for n - 16.

We computed u h, and u h, 2  the approximate eigenfunctions

corresponding to h,1 and kh,2' respectively, normalized by

11'11 D = 1. The results of Section 3 suggest that Uh i should be

close to C cos o(x) and uh,2 close to C sin 'P(x) (cf. (4.2)

and (4.3)), where C is such that C sin p(x) and C cos p(x)
-1/2

are normalized by ' = 1, i.e., C = , To illustrate
thsw(i)an i ) i= 2, o

this point we computed C1  and c(i) i 1,2, so that1 1

r11ui - C1i) cos p(x) - C i) sin q,(x)F

(4.4) K(i) =

I1u ih - C I  cos 2,(x) - C sin 2,4<X' , = .4

is minimal. We would expect that

(2) , (4) (2 )  (38 ) 0
(4.5) C C I C 2 ,C 2

and

)1) (2) = (3) = c(4) C = .564189583...Rs (4.6) c'I  = C2 = C ...

1 2 1 2

Table 4.2 shows some of the results for , = .4. We see clearly

- 44 -

MW Oa g=*



the results predicted in (4.5) and (4.6). The increase in C

C C 2 and C with increasing n Js due to the .

value solver we used. Table 4.2 also shows that K(I) < K(2) anc

K(3) < K(4), as we would expect.

The last column in Table 4.2 and Figure 4.1 show that the

ratios

h,i+l i+1
, i = 1,3,

h,i

increase as h----O. This shows that in the whole h-range we con-

sidered, the approximate eigenvalues converging to a multiple

eigenvalue are well separated.

'1
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Table 4.2

Numerical Solution of the Eigenvalue Problem (4.1) for ,i = .4

n 1 i (a) Ci -1
h,i 1 '2 -

Il 1.0716754 .2704 0 .5637791 0 -. 1124891 -16 1.5562955

21 1.1115481 .3423 01-.4151973 -13 .5636998 0

; 3 5.0394692i .1075 *.1 .5558919 O .1317809 -121 ::943249

4 5.2414639' .1191 +1 .5022638 -13 .5516234 0

1.01758501 .1329 01 .5641633 0 .1596754 -12; 2.0041570

2 1.0352431 1881 01 - 8916589 -12 5641519 C

3i 4.26919151 .5259 0 .5636643 01 .1124328 -13 :2575063

4 4.33851001 .5869 01-.2689727 -12, .5637697 0

1.00437401 .6C18 - .5641879 .6411454 -1i 2.6003B8-

3 21 1.0113741' .1067 0 .1323421 -10' .5641830 02"32 ' I"
1 3l 4.06660551 .2589 0 .5641561 0 .1970954 -10 ..4067517

-, 4l 4.0936974 .3067 01- 7375504 -101 .5641613 0

1 1.0010921 .3305 -1 .5641895 0 .7729760 -9 3.519000

64 2 1.0038431 .6202 -1i 8670648 -9 .5641883 0,

t3 4.0166006 .1289 0 .5641875 0 .3641341 -101 1.6437659

*4 4.0272875 .1653 0 .1415775 -8 .5641858 0

Ili 1.0002729 1651 -1 .5641895 0 .4535626 -7; 4.921593C
12 1.0013431 .3665 -l .3251219 -7 5641893 0

2 0041468 .6440 -11 .5641895 0 .4409247 -7, 2.010707!

14I 4.0083380! .9135 -11-.9 15611 -8' .5641890 0

i ili 1.0000682 .8255 -2 .5641896 01 .8070959 -5, 7.0542522
i256 2 1.0004811 .2193 -1 .7269570 -6 5641895 0

3 4.0010365, .3217 -1 .5641896 01 .6435344 -6 2.5706705

-!i4 : 4.0026645; .5162 -1! -.2601000 -61 .5641895 0
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We next consider the case when (1 = .01. Table 4.3 presents

the same results for u = .01 as Table 4.2 does for (I = .4.

Figure 4.2 shows the graph of

h,i+l - i+1 I
o h,i k I

as a function of the number of intervals n irn a semi-logaritlic

scale. The computed values are indicated by o's and x's. The

graphs are formed by interpolation (solid lines) and extrapolation

(dotted lines). We note three related phenomena that did not

occur with u = .4. For small n the approximate e4genfun-t; :-.
* -1/2
associated with h,i is uh, I - 1 sin 9(x), in contrast to

U h, I  cos p(x) when , = .4. We remark that cos

'A(x) is more easily approximated by Sh than is i, sin wx)

for all 0 < c, < 1. This anomaly is present for n u 64 and for

n - 128 we get results which are in agreement with the (asymp-

totic) results in Section 3. For kh we have t

take n 256 to get results which agree with the asymptotic

theory.

For u = .01 we see that K(2) < K(l) for small n(n 64'

and K(2) > K(I) for large n and K(4) < K(3) for small

n(n_128) and K(4) > K(3) for large n. Recall that K(21

K(1) and K(4) > K(3) for all. n when o = .4.

Finally we note that when (I = .01 the ratio

h,i+1 i+l
A - , i = 1,3,

h,i i

first decreases as n increases, then for some n the two eigen-

value errors become equal, and then the ratio increases again.
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This is in contrast to the case for , = .4, in which the ratio

increased over the whole range of n values. We further note

that the value n for which the eigenvalue errors are equal -

n- 70 for i = 1 and n- 160 for i = 2 (see Figure 4.2' -

marks a transition in each of these situations from uh,, 2

-1/2 

-

sin 'P(x) to uh,1 - - cos o(x) and Uh,3 -1 sin 24:-2

toh, hh,3 0 2i, fo
t to Uh, 3  ,'2 cos 2 (x), from K(2) < K(1) and .'- 4, < V '

to K(2) > K(1) and K(4) > K(3), and from h,- -

1,3, decreasing to increasing.

|*'" : We have thus seen that for u = .4 the numerical results we

in concert with the (asymptotic) results in Section 3 for the whc'e

V range of n considered, while for o = .01 they are in disagree-

ment for small n, but are in agreement for large n. We now

make an observation that further illuminates these two phases of

error behavior - the pre-asymptotic and the asymptotic. Towar.

this end we note that if ( lU I with Iu lI!D = 1, and

(;h,luh,l ), with lh,il D = 1, are first eigenpairs of (2.5.

and (2.11), respectively, then

0 - l lu 2 - k lu -u I2

0 h, h, I lB 1 h,1 ID

I 2 2. ~l-llD
(4.7) = inf [it -ullIB .j U

D= 1

If k is a multiple eigenvalue, then the u1  in (4.7) can be

any corresponding eigenvector with lu 1!1D = 1. (Note that we are

-q here assuming u1  and un1 have I"!I D_-length equal 1, whereas

in (2.6) and (2.12) they are assumed to have .1 -length equal
9B 0
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to 1.) The first inequality in (4.7) follows from the minimum

principle (2.8*) and has already been stated in (2.13). The first

equality in (4.7) follows immediately from Lemma 2.3 with .,2

Su) ,w = U and k = B(uhUh,

with = 1, then from the minimum principle (2.8*),

(4.8) kh,1 - k1 - BO(t'i)

Again from Lemma 2.3, this time with with (Ku) = (k,u,), w -

and = B0 (!,t), we have
- 22

(4.9) B1(k ) li-u 1 12 I - -U ,
0 1B 1 D'

The second equality in (4.7) follows from (4.8) and (4.9). :t is

clear, from the above discussion that u1  can be any eigenvector
t..

corresponding to 1

From (4.7) we have
2 2$h w t il

(4.10) kh, - 1  >I-U l ll 1 t-U llD2, V t with l i

If t is l*L"B 0-close to u1 , to be more precise, if .;s

taken to be the Bo-projection of u1  onto Sh , then the second

Pterm as the right side of (4.10) is negligible with respect to the

first term. This follows from the compactness assumption made

,1 I in Section 2. On the other hand, if jlu,- il is not small

k h,1 - 4, may still be small because of cancellation between -',e

two terms on the right side of (4.10). Regarding the case , -

.01, this explains why for h large (the pre-asymptotic phase

we can have uh, 1 -1/2 sin q) (x) and K(1) > K(2), and yet

have ki' the approximate eigenvalue associated with u,

- 50 -
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closer to k than is h the approximate eigenvalue assect>! h,2'

ated with uh,2 -2 cos o(x), while for h small 'the szvnp-

totic phase), we have Uh, 1 - ,'2 cos o (x), K(1) < K(2',, and

kh,i closer to I than is kh,2' showing that the eigenvaPue
2

error, h - i. is governed by inf f11-u H 2
1 t Sh B0

This situation is very similar to the situation with n

fixed and c varying, as can be seen from Table 4.4 where ncmpu--

tations for the case .n = 4 are shown. We see that the charac-

teristics observed in Table 4.3 regarding dependence on n are

present in Table 4.4 regarding dependence on ,. Name-;, :he
(i) t-i he a b rupt swi ' 7:.

abrupt switch in the values of C)1  2au..

K(2) < K(1) and K(4) < K(3) to K(2) > K(1) and .M,4) > K 3'

and the abrupt switch from decreasing to increasing rat:o of

errors near the parameter value corresponding to =h,1 : h We

mention this situation - , varying and n fixed - since is

easier to understand in terms of perturbation theory cf. Kats:

[5]) than is our original situation - n varying and
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Table 4.3

Numerical Solution of the Eigenvalue Problem (4.1) for = 0.

i) Chi- ~

ii 1.0520268 .2338 0 .8181940 -i1 .5634386 01 1.0171143
,2 1.0529172 2268 0, .5645965 0 -. 2916448 -I!

.8
-3 4.8576239: .9593 0 -. 9346720 -13 .5597529 C 1. 71C,4293

'4 4.8717141 .9615 0 .5604533 0 .1167277 -ii

1 . 01286611 .1223 0 .8717399 -101 .5635957 C I 011'C39

2: 1.0130098 .1052 O1 .5647369 O-.8480131 --9
16 :' ; I

:31 4.20883671 .4650 0 2507177 -10 .5636658 2 1.:87030

4 4.21065421 .4577 0 .5642694 0 -. 3101833 -3

.'A ! 1.0032139! .7274 -11-.9345818 -9i .5636031 7 :.2'8"

o2 1.0032360 .3568 -1, .5647430 0 .1213043 -
:32 4.0515675: .2384 0 .3745461 -9. .5638178 7 1.7757234

. 4: 4.0518629. .2205 0 .5644172 01-.4115544 -

ili 1.0008063 .5369 -11-.1311961 -5 .5636032 071733-

6 2. 1.0008077 .3398 - .5647430 0 2462939 -:.. :64 1 ! I
i31 4.0128623 .1343 0' .2743681 -7 .5638240 0 1C75337

-4, 4.0129086 .9792 - ! .5644235 0 .3196172 -9

1.00020181 .4196 -1 .5647430 01 .3356056 -5 1C ,

2 1.0002031 .4775 .7414162 -6 .5636032
128 1

. 13 4.0032196f .9166 -1 .2379072 -6 .5638239 7 .:C: ..C

,!4! 4.0032230 .9745 -21 .5644235 0 .1197135 -54372 56474295 0 .1015725-7

1 1. 000504 .437 -1 5647429 0 1061527 -4 _ 2>24

j2' 1 0000515 4614 -i" -. 1553659 -4 .5636031 7
256 i

13i 4.0008054i .5011 -1; .5644234 0 -. 2123273 -4 . -4

!'.- 41 4.0008079 .7741 -1 .11165012 - .5638238-
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Table 4.4

Numerical Solution of the Eigenvalue Problem (4.1) for . =

and for Various ,

h iK(i) C i) C C
-- i 1 1 ...

1 1.2030785 .4689 0 -. 2438763 -131 5594106 0 -. 2 9300C

_______ 21 2496444 .5161 0 .5594467 0 000

1_ 1.2238488 .5017 0 -. 8324194 -141 .5. ..7.2

2i 1.2679299 5366 0 .5585072 .1 000
1 1.2474367 .5322 0 -. 8324194 -14! .556257: 2 . E754C

.22 1.2713772 5414 0 5585072 01 000

7 1 1.2628455 .5506 0 -. 1979358 -12 .5526908 ".2"42T3:

__ 1.2718555 .5426 0 .5577904 0j .000

.28750 1.2715137! .5605 01-.7895498 -11 .5520158 C

_ _ _ _21 1.2718136 .5428 0 .55768520 0j 5301589 - ,
.28779 1 1.2717254 .5607 0 .2170355 -101 .5519997 ..... 2

2 1.2718105 .5429 0 .5576828 01-.2773092 -:2

1 1.2718089 .5429 0 .5576816 0j .1753561 -1C
_-"_ 21 1.2718309 .5608 0 1125467 -10. 551917 5599:

1. 280 1 1.2718072 .5429 0 .5576804 01 .1631249

2 1.27193751 .5610 0!-.2645923 -11 .551383E

28868 1  2718005 5429 01 .5576757 C .22497%2 -,
5614 0 .3464439 -12 5 5'3

2 1. 2723627!.

111 1.27178391 .5429 01 .5576649 .224972

2i 1.2733271: .5625 0 ! 8906887 -:3 .558783

1.29735 ' 127172631 .5429 0, .5576289 0, .00

S1.2760979 .5661 O;-.2000056 -13 .55:525z

3 Ii 1.27159651 .5430 0 5575862 0 .00C - .
S1.2808526 .5790 0-.1073461 -13 .5511203

.40 1 1.2646804. .5382 0: .5570759 .224978Z -: r 443',

'21 1.3830892' .6704 0 .1185635 3 5451225

.60 1 1.23647461 .5093 0 .5576799 I .Oc . "

S 1.8239095 .9695 0 .2249822 - .53'74:1
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